

s-d Electron scattering as a sensitive probe to study Fe/Cr multilayer structural differences (MBE/sputtered samples)

B.G. Almeida ^a, J.B. Sousa ^{a,*}, J. Colino ^b, Y. Schuller ^b, R. Schad ^{c,1}, V.V. Moshchalkov ^c, Y. Bruynseraede ^c

^a IFIMUP, Faculdade de Ciências, Universidade do Porto, P-4150 Porto, Portugal ^b Physics Department, University California–San Diego, La Jolla, CA 92093-0319, USA ^c Laboratium Vaste-Stof-Fysica en Magnetisme, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

Abstract

High resolution electrical resistivity measurements (ρ , $d\rho/dT$) were performed in two different series of [Fe_{30Å}/Cr_{rÅ}] multilayers. One was prepared by MBE on a (100) MgO substrate and the other by sputtering on (100) Si. In the temperature range 18 K < T < 50 K we observe that $\rho = \beta T^3$ where β is a sample dependent constant. According to theory this indicates the dominance of *phonon-assisted* interband (s/d) electron scattering. For the MBE grown samples β decreases with *t*(Cr) whereas for the sputtered samples β increases with *t*. The observed variation of β provides a sensitive tool for comparison of structurally-related effects in MBE and sputtered multilayers.

1. Introduction

A detailed study of the temperature dependence of the electrical resistivity of two differently prepared sets of $[Fe_{30\dot{\Lambda}}/Cr_{t\dot{\Lambda}}]_{10}$ multilayers (MBE and sputtered samples) is here reported using high resolution $d\rho/dT$ measurements taken in the temperature range 6–150 K.

The objective is to identify dominant electron scattering mechanisms and to use the temperature derivative of the electrical resistivity as a sensitive tool to reveal structural film differences arising from different growth conditions. In principle the main contributions to the electrical resistivity in the temperature range here reported, are electron-phonon (s-s), electron-magnon scattering and phonon-assisted interband (s-d) electron scattering [1].

One set of samples (A) was MBE epitaxially grown on (100) MgO substrates, with Cr thicknesses t = 9, 18, 21, 39 and 57 Å. The other set (B) was grown by sputtering on (100) Si substrates, with t(Cr) = 10, 19, 22 and 40 Å.

The measurements of $d\rho/dT$ were done with a quasistatic four-probe technique, with the absolute resistivity values obtained using the Van der Pauw method.

2. Results and discussion

Fig. 1a shows the temperature derivative of the electrical resistivity for the A-set of multilayers (MBE-prepared), in the temperature range 6–150 K. We observe that for small Cr thicknesses (t = 9, 18, 21 Å) $d\rho/dT$ exhibits large values whereas in the thick-Cr samples it is about a factor 3 smaller.

For the B-set of Fe/Cr multilayers (sputtered samples), the $d\rho/dT$ data exhibits the reverse behaviour, with considerably *smaller* $d\rho/dT$ values in the thin Cr-layer samples.

For sputtered Fe/Cr multilayers (and based only on coarse $\rho(T)$ data [2]) it has been previously claimed that electron-magnon scattering (giving a T^2 dependence in ρ) is the dominant mechanism in the temperature range 20-100 K. If so one would expect a linear temperature dependence in $d\rho/dT$, which is not supported by our data (Fig. 1a,b). We observe instead several distinct $\rho(T)$ regimes within the 6-150 K range, which prevents the use of a single power data fit (T^n) to describe the whole curve.

(i) A dominant T^3 term occurs in $\rho(T)$ over the temperature range 18-50 K and *in all the measured samples*. This corresponds to a T^2 dependence in $d\rho/dT$, as clearly shown in the plots of Fig. 2a,b representing $d\rho/dT$ versus T^2 .

This T^3 behaviour observed in Fe_{30 Å}Cr_{t Å} multilayers suggests the dominance of phonon-assisted interband s-d electron scattering. In fact one expects $\rho_{sd} \propto$ lattice

^{*} Corresponding author. Fax: +351-2-608-2679.

¹ Present address: Research Institute for Materials, Katholieke Universiteit Nijmegen.

^{0304-8853/96/\$15.00 © 1996} Elsevier Science B.V. All rights reserved SSDI 0304-8853(95)00914-0

Fig. 1. Temperature derivative of the electrical resistivity, in the range 6–150 K, for: (a) $[Fe_{30 \text{ Å}} / Cr_{t \text{ Å}}]_{10}$ multilayers with t = 9, 21, 39 and 57 Å deposited by MBE on MgO and (b) $[Fe_{30 \text{ Å}} / Cr_{t \text{ Å}}]_{10}$ multilayers with t = 10, 19, 22 and 40 Å deposited by sputtering on Si.

specific heat $\alpha (T/\Theta)^3$ when *T* is considerably less than the Debye temperature Θ [3], as in the present case $(\Theta \sim 450 \text{ K})$. We then expect the dominance of lattice energy quantization effects. Putting $\rho_{sd} = \beta T^3$ within such temperature range we have determined β for all the measured Fe_{30Å}Cr_{tÅ} multilayers.

Fig. 3 shows the dependence of β on the Cr-layer thickness. For the MBE samples β decreases with the Cr thickness (t), by a factor of 3.3 when t changes from 9 to

Fig. 2. Linear fit to the curves of $d\rho/dT$ versus T^2 in the temperature range 6–50 K, for: (a) $[Fe_{30\text{ Å}}/Cr_{t\text{ Å}}]_{10}$ multilayers with t = 9, 18, 21, 39 and 57 Å deposited by MBE on MgO and (b) $[Fe_{30\text{ Å}}/Cr_{t\text{ Å}}]_{10}$ multilayers with t = 10, 19, 22 and 40 Å deposited by sputtering on Si.

Fig. 3. Slopes (β) of the linear fits to the curves of $d\rho/dT$ versus T^2 , for the MBE and sputtered samples, versus Cr-layer thickness.

57 Å. For the sputtered samples β increases with t(Cr), by a factor of 1.9 when t changes from 10 to 40 Å.

(ii) For temperatures above ~ 50 K the exponent n (in $\rho \sim T^n$) progressively decreases, reflecting the expected decay in the vibrational lattice quantization effects. For temperatures ≤ 150 K we practically approach the classical regime characterized by a linear increase of the resistivity due to electron-phonon scattering (n = 1).

(iii) At temperatures below ~ 15 K, the $\rho(T)$ dependence gets more complex and we observe in some samples a faint minimum in the electrical resistivity.

Fig. 4. Temperature derivative of the electrical resistivity in the range 6-150 K, with a scaling constant (α) for each sample: (a) $\alpha = \beta(9\text{ Å})/\beta(t)$ for the Fe/Cr multilayers deposited by MBE on MgO and (b) $\alpha = \beta(10\text{ Å})/\beta(t)$ for the ones deposited by sputtering on Si.

In spite of the different regimes observed in $\rho(T)$ (different *n*) and the large quantitative differences observed in $d\rho/dT$ among the different samples, it is remarkable that all the $d\rho/dT$ curves corresponding to multilayers grown by a particular method can be brought fairly close to each other over the the whole temperature range 6–150 K (see Fig. 4a for MBE samples; Fig. 4b for sputtered samples) through the use of a scaling constant (α) for each multilayer. In Fig. 4 we used $\alpha =$ $\beta(9\text{ Å})/\beta(t)$ for the MBE samples and $\alpha = \beta(10\text{ Å})/\beta(t)$ for the sputtered ones. This suggests that the same s-d electron-phonon resistivity mechanism is dominant in both cases over that temperature range.

In summary, accurate $d\rho/dT$ measurements enable us to identify a dominant T^3 term in $\rho(T)$ (below ~ 50 K), indicating the importance of s-d electron scattering in Fe/Cr multilayers. We have shown that such measurements are very sensitive to the structure of each sample. A striking feature is an opposing Cr-thickness dependence of $d\rho/dT$ when measured in the MBE and sputtered samples. This could be useful to show structural differences occurring in multilayered thin films grown by different methods and/or deposited on different substrates.

Acknowledgements: This work has been supported by the Portuguese projects STRDA/C/CEN/522/92 and Praxis/3/3.1/FIS/21/94. B.G. Almeida gratefully acknowledges a Ph.D. grant from JNICT (BD/2217/92-IC).

References

- J.L. Duvail, A. Fert, L.G. Pereira and D.K. Lottis, J. Appl. Phys. 75 (1994) 7070.
- [2] J.E. Mattson, M.E. Brubaker, C.H. Sowers, M. Conover, Z. Qiu and S.D. Bader, Phys. Rev. B 44 (1991) 9378.
- [3] A.M. Wilson, Proc. Royal Soc. (Lond.) A 167 (1938) 580; B. Loegel and Gautier, J. Phys. Chem. Solids 32 (1971) 2723;
 S.D. Bader and F.Y. Fradin, Superconductivity in d- and f-band Metals (Plenum, New York, 1976) p. 567.